
For and While 
Loops

Robotics Curriculum
IT Adventures



Lesson Overview

● Learn about while and for loops

● Learn how to create loops in micro:bit code

● Combine loops with previous lessons (inputs and Boolean logic) to control the RVR



Loops… and Loops… and Loops… and Loops...

Loops are essentially as they sound: they will repeat the code that they are given until a certain 
condition is met. There are two main types of loops:

For loops run for a certain number of 
sequences or through a certain set of 
events/variables. These are especially 
powerful with arrays, which we’ll dive 
into during the next lesson. For now, 
know that they can be used to iterate a 
certain number of predefined times.

While loops will run while a certain 
condition is met. While this can be more 
flexible, it is also worth noting that if the 
condition is never met (or is impossible to 
meet), the code will run forever. On the 
flipside, if the condition is not met upon 
entering the loop for the first time, the 
code is skipped entirely.

Note: Loops analyze their condition only at the beginning of each loop, so if the condition is not 
met for a brief period of time while running the loop, but is back to being true by the time the 
loop is about to start over, it will run the code again. This is especially important to keep in mind 
if the program is looking for something, such as a line. If the loop is too long, or the code isn’t 
correct, it could see the line but skip over it.



Code Example

In the code to the left, an extremely simple loop will run 4 

times. This code highlights how simple loops can be. If you 

explore under the “Loops” tab in MakeCode, you will see 

that this is simply the first example of a loop, with while and 

for loops also being present. Try out some of them! As a part 

of the code, though, there is an If statement with a break in it.

break will break out of the loop immediately, instead of 

waiting for the looping to end. On the other hand, there is a 

continue statement as well, which will skip the rest of the 

code in the current loop, and start back at the top.



Primary Learning Challenge:
Dizzying Heights

The primary challenge for today is to make the RVR run in a circle… or rather, to make it run in a 

circle until a button is pressed. It is completely up to you to define the speed of the RVR, what 

button needs to be pressed, and more. You are limited in two ways:

1) You may only use one loop (think carefully about which loop would apply in this situation)

2) You may only use one move command

The only other thing to keep in mind is speed - while you can make it faster, remember that the 

faster it goes, the harder it is to press the button!

You can optionally add on to this challenge by having it so that when the button is pressed a 

second time, it will resume running in a circle.



Secondary Learning Challenge:
Spiraling In

Similar to the primary challenge, your goal 

is to only use a single loop and move 

command to drive the RVR. However, your 

goal this time is to drive the RVR in a spiral 

inwards. Think carefully about what type 

of loop works for this challenge, what 

kinds of limits you may need to place, and 

more. Good luck!


